刚拿诺奖的Hinton还教出了这些AI博士 除了Ilya

自近日获知自己摘得诺贝尔物理学奖之后,76 岁的人工智能教父 Geoffrey Hinton 便「闲不住」了。

这不,谷歌首席科学家 Jeff Dean 晒出了自己参加 Hinton 诺贝尔奖派对前与老爷子的合照,以及短时间内可以参加该派对的 Hinton 博士们。

在几十年研究生涯中,Hinton 培养出了 40 位博士生,其中不乏前 OpenAI 首席科学家 Ilya Sutskever、前苹果 AI 总监 Ruslan Salakhutdinov 这样的大牛。

在周二的一次演讲中,Hinton 表示自己非常幸运,遇到了很多聪明的学生,他们取得了非常大的成功,有的做出了伟大的成果。其中他为弟子 Ilya「解雇」奥特曼而感到自豪,并认为奥特曼现在更关心利润而不是安全。他同时呼吁加强对 AI 安全以及由好奇心驱使的基础研究的支持。

机器之心盘点了自 1987 年以来,Hinton 博士弟子们的研究领域、研究成果以及其他信息。如有遗漏和错误,请在评论区指正。

桃李满天下

Hinton 的博士跨越了近 40年

Peter Brown(1987)

Peter Brown 现在是文艺复兴科技(Renaissance Technologies)的首席执行官,他也是 Hinton 的第一位博士生,当时 Hinton 还是 CMU 计算机科学教授。

Peter Brown 博士期间主要研究自动语音识别中的声学建模问题。他曾在 IBM 研究所从事语音识别、机器翻译和大规模语言模型的研究。

David Ackley(1987)

David Ackley 是新墨西哥大学计算机科学名誉教授,致力于在无限可扩展的计算机架构上研究、开发和倡导稳健优先、尽力而为的计算。David Ackley 的工作涉及神经网络、机器学习、进化算法,以及安全、架构和计算模型的生物学方法。

值得一提的是,Hinton 与 David Ackley 和 Terry Sejnowski 共同发明了玻尔兹曼机。

Mark Derthick(1988)

Mark Derthick 自 1995 年开始在卡内基梅隆大学(CMU)任访问科学家、项目科学家、研究科学家,但目前已经离任。他的研究兴趣包括人机信息交互、交互式信息可视化、知识表征、探索性数据分析等。

Richard Szeliski(1988)

Richard Szeliski 是华盛顿大学计算机科学与工程系兼职教授、ACM Fellow、IEEE Fellow。Szeliski 在计算机视觉贝叶斯方法、基于图像的建模和渲染以及计算摄影领域进行了开创性研究,是计算机视觉领域的大师级人物,他在计算机视觉研究方面有 30 多年的丰富经验,主攻计算机视觉和计算机图形学,是 CV 经典教材《计算机视觉:算法与应用》的。

Richard Szeliski 先后任职于 DEC(美国数字设备公司)、微软研究院、Facebook、谷歌。1996 年,他在微软研究院任职期间提出了一种基于运动的全景图像拼接模型,采用 L-M 算法,通过求图像间的几何变换关系来进行图像匹配。此方法是图像拼接领域的经典算法,Richard Szeliski 也因此成为图像拼接领域的奠基人。2017 年,Richard Szeliski 获得 ICCV 大会颁发的杰出研究奖。

Kevin Lang(1989)

1989 年,Kevin Lang 在 Hinton 的指导下获得了 CMU 的计算机科学博士学位。根据网上查询到的有限资料显示,他的研究兴趣包括计算模型、细胞结构、形状建模以及量子点和细胞自动机、语音识别。

Steven Nowlan(1991)

Steven Nowlan 是 Epsilon 公司决策科学高级副总裁,他曾在 Motorola 工作近 20 年,在移动和基于位置的应用程序、复杂的软件架构以及研究科学家和软件开发人员的组合管理方面拥有丰富的经验,致力于将创新理念转化为成功的软件产品和服务。

David Plaut(1991)

David Plaut 是卡内基梅隆大学的心理学教授,致力于使用计算模型并辅以实证研究来研究高级视觉、阅读和语言以及语义领域正常和无序认知处理的本质。

David Plaut 的建模工作是在神经网络框架内进行的,其中认知过程是通过大量类似神经元的处理单元之间的合作和竞争交互来实现的,以深入了解认知过程如何在大脑中实现,以及大脑功能障碍如何导致认知障碍。

Conrad Galland(1992)

1992 年,Conrad Galland 在 Hinton 的指导下获得了多伦多大学的博士学位。根据网上查询到的有限资料显示,他的研究重点是矩阵计算。

Susanna Becker(1992)

Susanna Becker 是麦克马斯特大学心理学、神经科学和行为学名誉教授。1992 年,她在 Hinton 的指导下获得多伦多大学博士学位,研究兴趣包括记忆、计算神经科学、海马神经发生、脑机接口和神经反馈。

Richard Zemel(1994)

Richard Zemel 是美国国家科学基金会(NSF)人工智能和自然智能研究所(ARNI)主任,研究致力于用少量标签进行学习,创建强大且可控的机器学习系统,并且该系统可以迁移到各种任务和领域。他还对算法公平性有着浓厚的兴趣。Richard Zemel 还是 NVIDIA 人工智能先锋奖的获得者。

Tony Plate(1994)

1994 年,Tony Plate 在 Hinton 的指导下获得了多伦多大学计算机科学与人工智能博士学位。在攻读博士期间研究了如何在神经网络中表示复杂的概念。博士毕业以后,他曾在新墨西哥州立大学担任研究员、在不列颠哥伦比亚大学担任博士后研究员、在惠灵顿维多利亚大学担任助理教授,并在 2020 年 3 月之后加入谷歌担任工程师至今。

Sidney Fels(1994)

Sidney Fels 自 1998 年起担任不列颠哥伦比亚大学(UBC)电气与计算机工程系教授。他因在人机交互、3D 显示、生物力学建模、神经网络、智能体等方面的工作而享誉国际。

Christopher Williams(1994)

Christopher Williams 是爱丁堡大学信息学院机器学习教授。他的研究兴趣包括机器学习、统计模式识别、概率图形模型和计算机视觉。他还是《机器学习的高斯过程》一书的之一。

Radford Neal(1994)

Radford Neal 是多伦多大学统计系和计算机科学系荣休教授。他的研究兴趣包括贝叶斯推理、蒙特卡洛方法、信息论、机器学习和神经网络。

Carl Rasmussen(1996)

Carl Rasmussen 是剑桥大学工程系教授,研究领域包括机器学习和气候变化,研究重点包括概率推理、强化学习、近似推理、决策、非参数建模、随机过程等。

Brendan Frey(1997)

Brendan Frey 是国际知名机器学习和基因组生物学研究者,主要研究因子图、深度学习的 wake-sleep 算法,以及使用机器学习建模基因组生物学和理解遗传性疾病。他创立了 Deep Genomics,现任首席执行官,并且是多伦多大学计算机科学和医学教授。

Evan Steeg(1997)

Evan Steeg 是初创公司 stealth synthetic biology 的联合创始人兼首席人工智能官,还是 BTC 咨询公司总裁。他的研究兴趣包括 AI、ML、计算生物学、创业和战略规划。

Radek Grzeszczuk(1998)

Radek Grzeszczuk 是初创公司 SkinBit 联合创始人,曾在微软担任首席软件工程师主管。他为增强现实、基于图像的建模、视觉搜索和计算成像等领域的发展做出了贡献。

Brian Sallans(2002)

Brian Sallans 是机器学习、软件开发、移动软件专家,在奥地利第一储蓄银行(Erste Group)任高级数据科学家。

Sageev Oore(2002)

Sageev Oore 是加拿大 CIFAR 人工智能主席,戴尔豪斯大学计算机科学学院副教授,曾任谷歌大脑访问研究科学家。

Andrew Brown(2002)

Andrew Brown 查询到的信息不多,从 Google Scholar 主页可以看到,他的研究兴趣包括机器学习、神经网络、隐马尔可夫模型、循环神经网络。

他的博士毕业论文为《Product Models for Sequences》。论文介绍了一系列新的时序图模型, 采用的思路是通过大量更简单模型的密度组合来构建一个复杂的时序密度模型。

论文地址:https://dl.acm.org/doi/abs/10.5555/936308

Alberto Paccanaro(2002)

2002 年,Alberto Paccanaro 在 Hinton 的指导下获得多伦多大学的博士学位,专攻机器学习,并主要从事基础研究,在毕业论文中引入了线性关系嵌入,这是一种解决从示例中学习符号关系问题的新方法。

2006 年 2 月,他开始在伦敦大学皇家霍洛威学院的计算机科学系工作,此后晋升为教授。他的研究兴趣包括应用模式识别 / 机器学习技术来解决计算生物学问题。

Yee Whye Teh(2003)

Yee Whye Teh 是牛津大学统计系教授,也是 DeepMind 研究科学家。2003 年,他在 Hinton 的指导下获得了多伦多大学的计算机博士学位。此后在加州大学伯克利分校和新加坡国立大学从事博士后研究。他的研究兴趣包括机器学习、计算统计学,尤其是概率模型、贝叶斯非参数、大规模学习和深度学习。

2006 年,他与 Hinton、Simon Osindero 合著提出了深度信念网络的论文。深度信念网络是第一批成功应用深度架构训练的非卷积模型之一。在引入深度信念网络之前,研究社区通常认为深度模型太难优化,还不如使用易于优化的浅层 ML 模型。

而借助深度信念网络,研究者可以在未标注数据上预训练深度神经网络,这是一种生成模型的方式。预训练完成后,神经网络可以在标注数据上实现判别式的精调,从而获得很好的效果。

论文地址:https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

Simon Osindero(2004)

Simon Osindero 在取得剑桥大学的实验和理论物理硕士学位之后,选择攻读英国伦敦大学学院的计算神经科学博士学位,导师为 Hinton,还得到了神经学家 Peter Dayan 的指导。2004 年获得博士学位后,他加入了 Hinton 团队,成为博士后研究员。2006 年,他与 Hinton、Yee Whye Teh 合著提出了深度信念网络的论文。

毕业以后,他就职于多家企业,包括 2009 年至 2013 年 10 月担任 LookFlow 的联合创始人兼 CTO、2013 年 10 月至 2015 年 12 月先后担任雅虎的高级工程经理、AI 架构师和高级负责人、2017 至 2019 年英国伦敦大学学院担任客座讲师、2016 年至今担任谷歌首席研究科学家、DeepMind 研究总监。

Roland Memisevic(2008)

2008 年,Roland Memisevic 在 Hinton 的指导下获得了多伦多大学的计算机科学博士学位。2012 年 9 月至 2016 年 5 月,他担任蒙特利尔大学的助理教授。2016 年 5 月至 2021 年 7 月,他先后担任其联合创立的 AI / 计算机视觉初创公司 Twenty Billion Neurons 的首席科学家和 CEO。

2021 年 7 月,Twenty Billion Neurons 被高通收购,Roland Memisevic 担任高通高级总监至今。他的研究兴趣包括类人 AI 和神经网络中出现的常识。

Ruslan Salakhutdinov(2009)

Ruslan Salakhutdinov 是卡内基梅隆大学的 UPMC 计算机科学教授, 主要从事统计机器学习领域的工作。他的研究兴趣包括深度学习、概率图模型和大规模优化。

2009 年,他在 Hinton 的指导下完成了在多伦多大学的机器学习博士学位。此后他担任了 MIT 博士后研究员、多伦多大学助理教授(2011 年 - 2016 年)、AI 初创公司 Perceptual Machines 联合创始人(被苹果收购)、苹果 AI 研究总监(2016 年 - 2020 年)、卡内基梅隆大学教授(2016 年至今)、Meta 生成式 AI 研究副总裁(2024 年 6 月至今)。

Graham Taylor(2009)

2009 年,Graham Taylor 在 Hinton 和另一位导师 Sam Roweis 的指导下获得了多伦多大学计算机科学博士学位。此后,他在纽约大学柯朗数学科学研究所做了两年的博士后研究员,与 Yann LeCun 等人一起工作。2012 年,他加入圭尔夫大学工程学院担任助理教授。2017 年,他晋升为副教授,并成为 Vector 人工智能研究所的成员。

2018 年至 2019 年,他在蒙特利尔的 Google Brain 担任客座教员。2021 年,他晋升为教授,并成为 Vector 人工智能研究所的临时研究主任。2022 年,他正式成为研究主任。2023 年,他结束了 Vector Institute 研究主任的两年任期,此后更专注于自己的研究。他对生成模型、图表示学习和顺序决策等领域感兴趣。

Andriy Mnih(2009)

Andriy Mnih 是 Google DeepMind 的研究科学家。2009 年,他在 Hinton 的指导下获得了博士学位。此后到 2013 年 2 月,他担任 Gatsby 的博士后研究员。他的研究兴趣包括隐变量模型、变分推理、蒙特卡洛梯度估计和表征学习。

Vinod Nair(2010)

Vinod Nair 是雅虎班加罗尔实验室的研究员,2010 年,他在 Hinton 的指导下获得了多伦多大学的机器学习博士学位。他的研究兴趣包括机器学习和计算机视觉。

Josh Susskind(2011)

在多伦多大学攻读博士期间,Josh Susskind 接受了 Hinton(机器学习)和 Adam Anderson(行为科学)两位教授的指导。他开发出了第一个可以识别和生成面部表情的深度神经网络,并展示了这些计算模型学习到的统计学规律如何预测人类感知到的元素。他的工作成果曾发表在《自然神经科学》和《科学》等高影响力期刊以及计算机视觉顶会上。

2012 年,他联合创立了一家专注于实时感知人类行为的初创公司 Emotient,该公司在 2016 年被苹果收购。此后至今,他担任苹果的研究经理、深度学习科学家。

Ilya Sutskever(2012)

Ilya Sutskever 可称得上 Hinton 最得意的博士生了。在多伦多大学本科期间,Ilya Sutskever 从一个「改进随机邻域嵌入算法」的项目开始,与 Hinton 合作,后来在攻读博士学位时正式加入了 Hinton 团队。

2012 年,Hinton 带着 Ilya Sutskever 和另一名研究生 Alex Krizhevsky 建立了一个名为 AlexNet 的神经网络,其识别照片中物体的能力远远超过了当时的其他系统。

Ilya Sutskever(左)、Alex Krizhevsky(中)、Geoffrey Hinton(右)

2012 年毕业后,Ilya Sutskever 在斯坦福大学跟随吴恩达做了两个月的博士后,随后返回多伦多大学并加入了 Hinton 研究小组的衍生公司 DNNResearch 。

2013 年 3 月,Google 收购了 DNNResearch,聘请 Ilya Sutskever 担任 Google Brain 的研究科学家。在谷歌,Ilya Sutskever 展示了如何将深度学习的模式识别能力应用于数据序列,包括单词、句子。

他与 Oriol Vinyals 和 Quoc Le 合作创建了序列到序列(Seq2seq)学习算法,深度参与了 TensorFlow 的研究,也是 AlphaGo 论文的众多之一。对语言的浓厚兴趣,或许推动了 Ilya Sutskever 加入 OpenAI 的脚步。

2015 年 7 月,Ilya Sutskeve 参加了 Y Combinator 总裁 Sam Altman 在 Sand Hill Road 一家餐厅举办的晚宴,在那里遇到了 Elon Musk 和 Greg Brockman。那场晚宴上诞生了 OpenAI。

2015 年底,Ilya Sutskever 以「研究总监」的头衔开始领导 OpenAI 的研究和运营,这个组织还吸引了几位世界知名的人工智能研究者,包括「GAN 之父」Ian Goodfellow、UC 伯克利的 Pieter Abbeel 以及 Andrej Karpathy。

2016 年,OpenAI 的第一个 GPT 大型语言模型问世。从 GPT-2 到 GPT-3,模型的能力越来越强大,证明了这条路线的实际正确性。每一次发布,OpenAI 都在不断提高人们的想象力上限。

随着 GPT-4 以及后续一系列更强大的大语言模型的更新,以 Ilya Sutskever 为代表的一部分 OpenAI 成员越来越担忧 AI 的可控性问题。于是有了后来的突然与 Sam Altman 所代表的派系决裂、离职收场的故事。

今年 5 月 15 日,Ilya Sutskever 官宣从 OpenAI 离职,并在 6 月 20 日宣布成立安全超级智能公司(SSI),追求安全的超级智能,希望通过一支精干顶尖的小团队取得革命性的成果,进而实现这一目标。9 月,SSI 宣布融资 10 亿美元,投资者包括了顶级风险投资公司 Andreessen Horowitz、Sequoia Capital、DST Global 和 SV Angel。

Abdel-rahman Mohamed(2013)

Abdel-rahman Mohamed 是 FAIR 研究科学家。在加入 FAIR 之前,他是 Amazon Alexa AI 团队的首席科学家经理。2014 年至 2017 年,他是微软雷德蒙德研究院(MSR)的研究员。

2013 年,他在 Hinton 和另一位导师 Gerald Penn 教授的指导下获得了多伦多大学的博士学位。他还是 2009 年开启口语处理深度学习革命的团队成员,并在 2016 年获得了 IEEE 信号处理协会最佳期刊论文奖。他的研究兴趣包括深度学习、口语处理和自然语言理解。

Vlad Mnih(2013)

Vlad Mnih 是 Google DeepMind 的一名研究科学家。2013 年,他在 Hinton 的指导下获得了多伦多大学的机器学习博士学位。在此之前,他在阿尔伯特大学获得了计算机科学硕士学位。他的研究兴趣包括深度强化学习、多目标识别、视觉注意力等。

Navdeep Jaitly(2014)

2014 年,Navdeep Jaitly 在 Hinton 的指导下获得了多伦多大学机器学习和计算机科学博士学位。毕业以后,他先后任职于 Google Brain(高级研究科学家)、英伟达(杰出研究科学家)、 再次 Google Brain(科学家)、投资管理公司 The D. E. Shaw Group(深度学习负责人、副总裁)以及 2021 年至今苹果(机器学习研究科学家)。他的研究兴趣在于前沿深度学习。

Tijmen Tieleman(2014)

2014 年,Tijmen Tieleman 在 Hinton 的指导下获得了多伦多大学的深度学习博士学位。2018 年以来,他先后担任 AI 初创公司 minds.ai 的 CTO、CEO、联合创始人和首席科学家。他的研究兴趣包括具有不寻常成分的多层确定性前馈神经网络以及使用受限玻尔兹曼机的多层神经网络等。

George Dahl(2015)

George Dahl 是美国山景城 Google Brain 团队的一名研究科学家。2015 年他在 Hinton 的指导下获得了博士学位,攻读博士期间,他与其合训练出了第一个成功的自动语音识别深度声学模型,还领导团队赢得了 Kaggle 主办的默克分子活性挑战赛。他的研究兴趣包括深度学习、自然语言处理和统计机器学习。

Yichuan Charlie Tang(2015)

Yichuan Charlie Tang 从事深度学习和统计机器学习领域的工作。2015 年,他在 Hinton 和另一位导师前苹果 AI 总监 Ruslan Salakhutdinov 的指导下获得了多伦多大学的机器学习博士学位。他的研究兴趣广泛,包括机器人 / 自主技术应用、计算机视觉、自然语言处理和强化学习。

2017 年 1 月至 2020 年 6 月,他在苹果先后担任研究科学家和高级研究科学家。此后他在投资管理公司 The D. E. Shaw Group 担任机器学习研究副总裁。

Nitish Srivastava(2016)

Nitish Srivastava 的研究兴趣包括机器学习、深度网络和人工智能。他在多伦多大学计算机科学系攻读博士,导师为 Hinton 和前苹果 AI 总监 Ruslan Salakhutdinov 的博士,并于 2016 年获得博士学位。

2017 年 2 月至 2022 年 2 月,他在苹果先后担任机器学习工程师和机器学习研究科学家。2022 年至今,他联合创立了机器人初创公司 Vayu Robotics 并担任 CTO。

Jimmy Lei Ba

Jimmy Lei Ba 是多伦多大学助理教授。他从本科(2011)、硕士(2014)到博士(2018)都是在多伦多大学完成的,博士期间导师为 Hinton。他的研究兴趣涵盖了 NeurIPS、ICLR 和 ICML 等研究社区的广泛主题,并对强化学习、自然语言处理和人工智能感兴趣。他是 CIFAR AI 主席,还曾是 2016 年 Facebook 机器学习研究生奖学金获得者。

Cem Anil(在读博士生)

Cem Anil 是多伦多大学和 Vector Institute 的在读博士生,接受 Hinton 和 Roger Grosse(副教授)的指导。他还是 Anthropic 对齐科学团队的成员。他的工作涉及深度学习和 AI 安全,并对大语言模型的稳健性和泛化性模式感兴趣。他同时致力于推导 Scaling law 来预测潜在危险能力的发展。

参考链接:https://www.cs.toronto.edu/~hinton/gradstuphd.html


人工智能与有限元

谷歌的AlphaGo与柯杰的大战已经结束数日,而DeepMind承诺的50分棋谱也已经公布,而作为当前最先进的计算机“技术”,有限元方法有没有与机器学习(人工智能)进一步结合并碰发出绚丽的“火花”呢??答案是肯定的!!!什么是人工智能 人工智能(Artificial Intelligence),英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 机器学习是人工智能的一个分支,简单地说,就是通过算法,使机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来进行预测。 常见的机器学习算法如: ✔神经网络(Neural Network) ✔支持向量机(Support Vector Machines, SVM)Boosting ✔决策树(Decision Tree) ✔随机森林(Random Forest) ✔贝叶斯模型(Bayesian Model)等。 早期的机器学习算法由于受到理论模型和计算资源的限制,一般只能进行浅层学习,只在搜索排序系统、废品邮件过滤系统、内容推荐系统等地方有所应用。 而之后发生的几件事,掀起了深度学习的浪潮。 一件是2006年,加拿大多伦多大学教授Hinton和他的学生Salakhutdinov在Science上发表了一篇文章,揭示了具有多个隐层的神经网络(即深度神经网络)优异的学习性能,并提出可以通过“逐层初始化”技术,来降低深度学习网络训练的难度; 第二件事是在2012年 底,Geoff Hinton 的博士生 Alex Krizhevsky、Ilya Sutskever利用卷积神经网络(Convolutional Neural Network, CNN)在图片分类的竞赛 ImageNet 上,击败了拥有众多人才资源和计算资源的Google,拿到了第一名。 如今机器学习已深入到包括语音识别,图像识别,数据挖掘等诸多领域并取得了瞩目的成绩。 有限元法的发展简史 有限元方法(FEA)即有限单元法,它是一种数值分析(计算数学)工具,但不是唯一的数值分析工具。 在工程领域还有其它的数值方法,如:有限差分法、边界元方法、有限体积法。 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。 事实上,有限单元法已经成为在已知边界条件和初始条件下求解偏微分方程组的一般数值方法。 有限单元法在工程上的应用属于计算力学的范畴,而计算力学是根据力学中的理论,利用现代电子计算机和各种数值方法,解决力学中的实际问题的一门新兴学科。 它横贯力学的各个分支,不断扩大各个领域中力学的研究和应用范围,同时也在逐渐发展自己的理论和方法。 神经网络与力学 其实,在深度学习浪潮掀起之前,力学和工程领域早已开始在计算力学研究中结合神经网络模型,开发出更优的算法,一个典型的例子便是有限元神经网络模型。 由于在实际工程问题中存在大量的非线性力学现象,如在结构优化问题中,需要根据需求设计并优化构件结构,是一类反问题,这些非线性问题难以用常规的方法求解,而神经网络恰好具有良好的非线性映射能力, 因而可得到比一般方法更精确的解。 将有限元与神经网络结合的方法有很多,比如针对复杂非线性结构动力学系统建模问题,可以将线性部分用有限元进行建模,非线性构件用神经网络描述(如输入非线性部件状态变量,输出其恢复力),再通过边界条件和连接条件将有限元模型部分和神经网络部分结合,得到杂交模型。 另一种方法是首先通过有限元建立多种不同的模型,再将模态特性(即最终需要达到的设计要求)作为输入变量,将对应的模型结构参数作为输入变量,训练神经网络,利用神经网络的泛化特性,得到设计参数的修正值。 结合Monter Carlo方法,进行多组有限元分析,将数据输入神经网络中进行训练,可以用来分析结构的可靠度。 已有研究成果 [1]余凯,贾磊,陈雨强,徐伟. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,09:1799-1804. [2]周春桂,张希农,胡杰,谢石林. 基于有限元和神经网络的杂交建模[J]. 振动工程学报,2012,01:43-48. [3]费庆国,张令弥. 基于径向基神经网络的有限元模型修正研究[J]. 南京航空航天大学学报,2004,06:748-752. [4]许永江,邢兵,吴进良. 基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法[J]. 重庆交通大学学报(自然科学版),2008,02:188-190+216. 未来的一些方向1、图形显示方面(有限元与AR&VR) 随着有限元计算涉及的领域以及计算的规模不断增大,计算结果的高效、高质量的前后处理也随之成为了一个问题。 AR&VR在图形化数据展示方面,将我们从显示屏解放出来,可以以一种更加直观的方式查看计算分析数据,未来在分析结果VR展示方面,会有较大的突破。 国内也有学者已经展开了相关方面的研究,比如《虚拟现实环境中有限元前后处理功能实现》等论文,有限元虚拟处理技术(FEMVR)也开始逐步进入相关软件领域,例如:ANSYS COMSOL可以和MATLAB做交互,新版MATLAB内置了一些人工智能算法。 2、有限元与大数据、云计算 计算规模增大,伴随着计算机能力的提升,随之而来的云计算,解脱了对于计算机硬件的束缚,对于可以放开规模与数量的分析计算,有限元与大数据以及云计算的碰撞,对于未来问题的解决,将有一个质的飞跃,量变到质变的直观体现,在有限元与大数据中会有一个绚丽的展示。 3、有限元与人工智能 人工智能作为全球热的技术,与“古老”的有限元之间,相信可以在老树上发新芽,而我们可以欣喜的看到,相关的研究也已经开展,期待未来对于现实问题的解决,能有更好的更优的方案。 4、CAD数据与CAE数据的无缝对接 目前等几何分析(Isogeometric Analysis, IGA)的发展热度来看,将CAD中用于表达几何模型的NURBS基函数作为形函数,克服FEA中模型精度损失的问题,实现CAD和CAE的无缝结合,是一个很有前途和潜力的发展方向。 5、CAE与MBD的深度融合 未来CAEFEM可能会与多体动力学仿真(MBS)软件深度整合起来。 实际系统中某些运动部件的弹性无法忽略,甚至是主要动力学行为的来源,所以就产生了柔性多体动力学仿真这个需求,这样只需要定义相关部件的受力和边界条件,其余的都是内部作用,仿真即节省工作量又较为真实可信。 而且现在的确有很多MBS软件里面可以把部件建成弹性体,如LMS Virtual Lab,Simpack等等,但过程没有那么傻瓜;除了简单的梁、轴等零件,复杂形状的零件要依赖FEM软件事先生成的数据文件。 6、网格工作的智能化,傻瓜化 将来对弹性体建模可能更加傻瓜,先把刚性多体系统模型建起来,然后在建模环境(前处理)中直接make body flexible,系统可以根据这个部件的形状、材料、边界条件等选择合适的网格类型,并把运动和力的作用点couple到对应的节点(组)上。 比如说汽车悬挂系统仿真,在一个工作环境下就能把某个部件的应力校核给做了,而不需要说搞多体建模的人要把边界力生成一个load case再发给专门的FEM工程师去做。 (部分来自知乎)如何追上有限元的发展 任何技术的进步,都要在实践中展示技术的威力,有限元的发展,会随着技术的进步,特别是计算机技术的进步,在未来无论是应用软件的研究还是智能程序的开发,都将有无限的机会与可能。 积极学习新技术,新方法,在应用领域,关注有限元相关软件的新功能。 1、了解热点、跟踪前沿 2、结合实际拓展应用 3、掌握自动化相关技术想要更多,点击此处

【AI大咖】认真认识一代AI教父Hinton

AI长路漫漫,许多巨匠功不可没,今日推出《AI大咖》专栏,探索AI巨擘,探索他们的研究,探寻他们的故事。 首登者为深度学习鼻祖Geoffrey Hinton,他的传奇人生值得我们深入了解。 Hinton,1947年出生于加拿大,现年72岁,已婚有两个孩子,被誉为“人工智能教父”。 他分别在剑桥大学获得实验心理学学士学位和爱丁堡大学获得人工智能博士学位。 现任Google副总裁兼工程研究员,同时在多伦多大学教授。 同时,他也是VectorInstitute的首席科学顾问。 Hinton于2018年因其在“深度学习领域的三大先驱之一”的贡献而获得图灵奖,被彭博社选为2017年改变全球商业格局的50人之一。 Hinton的贡献包括将反向传播用于多层神经网络,发明玻尔兹曼机,提出逐层初始化预训练方法,以及提出胶囊神经网络。 他培养了许多优秀的学生,包括Facebook人工智能研究院总监Yann LeCun,DeepGenomics公司的创始人和CEO Brendan Frey,R语言的pqR解释器Radford Neal,DNNresearch的联合创始人Ilya Sutskever,以及AlexNet网络的主要Alex Krizhevsky。 Hinton的代表性研究论文涵盖了从反向传播算法的使用到胶囊神经网络的提出,涵盖了深度学习的各个方面。 除了学术成就,Hinton还拥有众多个人成就,包括1998年被授予英国皇家学会会员,2001年获得国际认知科学领域最高学术荣誉Rumelhart Prize,2005年获得国际人工智能联合会议卓越研究奖,2016年被授予美国国家工程院外籍院士,2018年获得图灵奖。 Hinton的家庭背景同样引人注目,他的家族包括布尔代数的创造者George Boole,以及多位著名的作家、科学家和工程师。 Hinton的求学之路并不顺利,他曾在剑桥大学国王学院短暂就读物理和化学后退学,后转读建筑学也未能坚持,最终选择了心理学,并在1970年获得实验心理学学士学位。 Hinton在学术界经历过艰难时期,曾经被一些学术机构和AI与计算机科学领域的圈子拒之门外,但在计算机硬件能力迅速发展后,数据开始以惊人的速度积累,神经网络的训练变得可行。 Hinton在2006年在Science上发表的文章揭开了深度学习的序幕,2009年两名学生使用神经网络赢得语音识别比赛,2012年另外两名学生轻松赢得ImageNet ILSVRC挑战赛,提出著名的AlexNet。 Hinton的妻子Ros因卵巢癌去世,第二任妻子Jackie后来被诊断出患有胰腺癌,这些经历促使Hinton对AI在医疗领域的潜力充满热情,并建立了Vector Institute,以使用神经网络研究大量医疗数据。 Hinton的名言包括“大概在7岁的时候我就意识到,不读博士不行了”以及“如果你想了解非常复杂的设备,像大脑这样的,你必须要自己做一个”。 Hinton用40年执着于神经网络研究,终引人工智能风骚,为AI领域做出了巨大的贡献。 让我们向这位AI教父表示敬意。

陶哲轩众包数学项目完成度99.99% 仍未看到AI工具的重大
玩家 比DEI好太多了 寂静岭2玛利亚经典服装Mod太美