IT之家 10 月 12 日消息,近年来,人工智能(AI)在各个领域取得了显著的进展,其中大型语言模型(LLM)能够生成人类水平的文本,甚至在某些任务上超越人类的表现。然而,研究人员对 LLM 的推理能力提出了质疑,他们发现这些模型在解决简单的数学问题时, 只要稍加改动,就会犯错误,这表明它们可能并不具备真正的逻辑推理能力。
图源 Pexels
周四,苹果公司的一组研究人员发布了一篇名为《理解大型语言模型中数学推理的局限性》的论文,揭示 LLM 在解决数学问题时容易受到干扰。IT之家注意到, 研究人员通过对数学问题的微小改动,例如添加无关的信息,来测试 LLM 的推理能力 。结果发现,这些模型在面对这样的变化时,其表现急剧下降。
例如,当研究人员给出一个简单的数学问题:“奥利弗星期五摘了 44 个奇异果,星期六摘了 58 个奇异果。星期日,他摘的奇异果是星期五的两倍。奥利弗一共摘了多少个奇异果?”时,LLM 能够正确地计算出答案。然而,当研究人员添加一个无关的细节,“星期日,他摘的奇异果是星期五的两倍,其中 5 个比平均小。”时,LLM 的回答却出现了错误。例如,GPT-o1-mini 的回答是:“... 星期日,其中 5 个奇异果比平均小。我们需要从星期日的总数中减去它们:88(星期日的奇异果) - 5(较小的奇异果) = 83 个奇异果。”
上面只是一个简单的例子, 研究人员修改了数百个问题,几乎所有问题都导致模型的回答成功率大幅下降。
研究人员认为,这种现象表明 LLM 并没有真正理解数学问题,而是仅仅根据训练数据中的模式进行预测。但一旦需要真正的“推理”,例如是否计算小的奇异果,它们就会产生奇怪的、不合常理的结果。
这一发现对 AI 的发展具有重要的启示。虽然 LLM 在许多领域表现出色,但其推理能力仍然存在局限性。未来,研究人员需要进一步探索如何提高 LLM 的推理能力,使其能够更好地理解和解决复杂的问题。
什么是人工智能
人工智能(Artificial Intelligence) ,英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 人工智能, 英文单词 artilect ,来源于 雨果·德·加里斯 的著作 . “人工智能”一词最初是在1956 年Dartmouth学会上提出的。 从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。 人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。 但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发具有人工智能的机器人展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。 它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学技术的发展史联系在一起的。 除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 实际应用 机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,博弈,自动程序设计,还有航天应用等。 学科范畴 人工智能是一门边沿学科,属于自然科学和社会科学的交叉。 涉及学科 哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学, 研究范畴 自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法 人类思维方式 应用领域 智能控制,专家系统,机器人学,语言和图像理解,遗传编程 机器人工厂 安全问题目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。 这种隐患也在多部电影中发生过。 人工智能的两种实现方法人工智能在计算机上实现时有2种不同的方式。 一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。 这种方法叫工程学方法(Engineering approach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。 另一种是模拟法(Modeling approach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。 本书介绍的遗传算法(Generic Algorithm, 简称GA)和人工神经网络(Artificial Neural Network,简称ANN)均属后一类型。 遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。 为了得到相同智能效果,两种方式通常都可使用。 采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。 如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。 而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁, 非常麻烦。 采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。 这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。 利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。 但一旦入了门,就可得到广泛应用。 由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。 定义人工智能的定义可以分为两部分,即“人工”和“智能”。 “人工”比较好理解,争议性也不大。 有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。 但总的来说,“人工系统”就是通常意义下的人工系统。 关于什么是“智能”,就问题多多了。 这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。 人唯一了解的智能是人本身的智能,这是普遍认同的观点。 但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。 因此人工智能的研究往往涉及对人的智能本身的研究。 其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。 人工智能目前在计算机领域内,得到了愈加广泛的重视。 并在机器人,经济政治决策,控制系统,仿真系统中得到应用。 著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。 ”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。 ”这些说法反映了人工智能学科的基本思想和基本内容。 即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。 人工智能(Artificial Intelligence,简称AI)是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。 也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。 这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。 人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。 人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。 可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。 从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。 本段简史人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。 计算机时代1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明, 为人工智能的可能实现提供了一种媒介的开端虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. Norbert Wiener是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大. 1955年末,Newell和Simon做了一个名为逻辑专家(Logic Theorist)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题.逻辑专家对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 Vermont参加 Dartmouth人工智能夏季研究会.从那时起,这个领域被命名为 人工智能.虽然 Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础. Dartmouth会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. Carnegie Mellon大学和MIT开始组建AI研究中心.研究面临新的挑战: 下一步需 要建立能够更有效解决问题的系统,例如在逻辑专家中减少搜索;还有就是建立可以自我学习的系统. 1957年一个新程序,通用解题机(GPS)的第一个版本进行了测试.这个程序是由制作逻辑专家 的同一个组开发的扩展了Wiener的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组 Gelerneter花3年时间制作了一个解几何定理的程序. 当越来越多的程序涌现时,McCarthy正忙于一个AI史上的突破.1958年McCarthy宣布了他的新成 果: LISP语言. LISP到今天还在用的意思是表处理(LISt Processing),它很快就为大多数AI开发者采纳. 1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家, 加快了AI研究的发展步伐.大量的程序以后几年出现了大量程序.其中一个著名的叫是微型世界项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由Marvin Minsky领导的研究人员发现, 面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的STUDENT可相关书籍以解决代数 问题,SIR可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助. 70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为可能. 70年代许多新方法被用于AI开发,著名的如Minsky的构造理论.另外David Marr提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信 息,可以推断出图像可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如Teknowledge和Intellicorp成立了。 为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来.从实验室到日常生活人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了象美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。 150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上. 其它一些AI领域也在80年代进入市场.其中一项就是机器视觉. Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元. 但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 Teknowledge和Intellicorp两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费.另一个另人失望的是国防部高级研究计划署支持的所谓智能卡车.这个项目目的是研制一种能完成许多战地任务的机器人。 由于项目缺陷和成功无望,Pentagon停止了项目的经费. 尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的人工智能机器人条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在沙漠风暴行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活.
人工智能专业怎么样?
人工智能专业很好。 人工智能属于自然科学和社会科学的交叉性学科,它与计算机科学、信息学、数学、神经生理学、认知科学、心理学等众多学科有极强的关联性。 目前,人工智能在计算机领域内得到了广泛的重视,并在机器人,经济政治决策,控制系统,仿真系统等方面得到应用。 因此,从这些个解读考虑,在本科阶段可以选择与计算机、数学相关的专业,如计算机科学与技术、软件工程、通信工程、应用数学、统计数学等专业,以及近年来高校新设立的智能科学与技术、数据科学与大数据技术等专业。 此外,也还可以考虑自动化、机械类专业,有些高校在此类专业基础上延伸至人工智能方向。 2人工智能专业就业前景近几年,人工智能、移动终端、云计算、大数据等相关专业应届生备受企业关注,同学们都是被几家企业同时抢着要。 数据显示,我国人工智能相关人才缺口超过500万,“坑多萝卜少”的现状让企业展开了校园人才争夺战。 国家提出了人工智能三步走的发展战略,现在人工智能已经上升到战略层面。 在今年的人大会议中,总理在政府工作报告中再提“人工智能”。 我们都知道,被列入国家发展规划后,国家会颁发很多政策去促进这一计划的实现,所以越早进入人工智能领域就越有发展潜能。 这是一个属于人工智能的时代。 当前,人工智能是一颗闪耀的“明星”,已经成为国际竞争的新焦点,世界多国都在加紧人工智能发展布局,以至于提到了战略高度的地位。 人工智能专业毕业后可以留校当老师,公司研发岗位,人工智能实验室等。 具体岗位有:数据挖掘工程师、下位机算法工程师、售前技术支持(商业智能方向)、行业研究员(股市)、科技公司的电气工程师、C/C++算法开发工程师等等。
ai能做数学题吗ai能做数学题吗
简是的,AI可以做数学题。 深入分析:数学作为一门逻辑严密的学科,计算机AI可以较好地处理。 AI可以识别和理解数学题中的问题描述、变量、条件限制等要素,并根据题目的要求进行符号运算、逻辑推理以得到正确答案。 这需要AI系统具备的关键技能有:1. 自然语言理解:能解析题目中的文本描述,理解命题意图和变量条件。 2. 数学知识与运算:掌握基本的数学知识,如四则运算、指数运算、代数、几何等,并能进行精确运算。 3. 逻辑推理:能根据题目条件,推导出中介过程和最终答案。 对于较复杂的应用题,需要进行多步骤的逻辑推理与计算。 4. 知识构建:对公式、定理、常识等数学知识点进行持续整理与构建,形成知识图谱,为运算与推理提供支持。 目前,AI在数学题解答上已经取得长足进展。 不仅可以处理基础的四则运算与代数题,也能解答一定难度的应用题和计算题。 但对于某些需要较高水平思维逻辑与数学知识的难题,AI的解答能力还面临一定挑战。 随着AI技术的发展,其在数学运算与逻辑推理上的能力将不断增强。 给出优质建议:AI在数学题解答上虽已具备一定能力,但距离人工智能真正“会数学”还有一定距离。 这里给出一些建议:1. 不要过于依赖AI完成复杂或高难度的数学运算与逻辑推理。 这仍然是人工智能的薄弱点。 2. 结合人工和AI的优势,共同解决复杂数学问题。 人类在思维上更加灵活与富创造力,机器在计算上更加精确与高效。 这种人机结合更能发挥双方优势。 3. 不断提高自身的数学知识与逻辑思维能力。 这些是AI难以完全取代的人的长期优势。 4. 难以理解的数学概念与推理,仍需老师和专家帮助理解。 AI的语言表达与解释仍然不及人工。 5. 随着AI的发展,其对数学的理解与计算将日趋精深。 但也应意识到其限制,有些高难度与高创造性的数学任务依然需要人工智能与人工 的结合。 6. 培养正确的人机关系观。 AI是辅助工具,不能完全替代人的判断与推理。 避免过度依赖或漠视其限制。 7. 积极关注相关AI技术与产品的发展动向。 随时掌握其在数学与推理上日新月异的运算能力。 并理解其进步背后的技术原理。 总之, AI在数学上的能力已经相当强大,但要真正达到人类的水平还需要长期努力。 希望我们能理解AI的发展现状,运用其优势,弥补其不足,最终达到人机协作的良性互动。 这将是实现更广泛而深入的数学任务的有效途径。 可以,1人工智能通过数据分析学习计算形成固定思维引导运行模式,将学习数学证明题进行超规格数据化虚拟训练,积累数学证明题运行参数,能够完整运行解题思路运行数学证明题解题过程,通过学习数据结构,人工智能能做数学证明题可以。 首先,计算器就能解决一部分数学问题,这种数学问题AI解起来是很简单的。 但是有些计算器无法解决的逻辑问题,AI经过训练也是能够解决的。 现在有MathGPT可以进行解决有逻辑思维的数学问题。