镍基高温合金指的是以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高强度和良好抗氧化、抗腐蚀能力的高温合金材料。
镍基高温合金系列材料,被广泛地应用在航空 航天 电力工业 石油化工 核能 冶金 海洋船舶 环保 机械 能源 交通汽车 电子等领域。
是制造航空航天发动机热端部件、工业燃气轮机、能源、交通、石油化工等高温耐蚀部件的军、民两用合金。
进口高温合金牌号:哈氏系列C-276、C-22、C-2000、C-4、B-3、G-30、ALLOY59、Inconel600、Inconel601、Inconel625、Inconel718、Inconel X750、Incoloy800、Incoloy800H、Incoloy800HT、Incoloy825、Monel400、Monel k500、Alloy20、Alloy 28 、Alloy31、RA330、RA333、N、NIMONIC系列、MP35N、ELGILOY、HAYNES HR-120 / HR-160 、HAYNES 556/242/230等。
纯 镍NI201、NI200等。
变形高温合金牌号:GH1015、GH1016、GH1035、GH1040、GH1131、GH1139、GH1140、GH1180、GH1333、GH2132、GH2136、GH2696、GH2747、GH2018、GH2026、GH2036、GH2038、GH2130、GH2135、GH2136、GH2150、GH2302、GH2328、GH2706、GH2761、GH2787、GH2901、GH2903、GH2907、GH2909、GH2984、GH3128、GH3039、GH3030、GH3044、GH3536、GH3230、GH3170、GH3181、GH3600、GH3625、GH3652、GH4049、GH4090、GH4099、GH4105、GH4141、GH4145、GH4169、GH4648、GH4738、GH4202、GH4080A、GH4093、GH4098、GH4133、GH4137、GH4163、GH4199、GH4220、GH4413、GH4500、GH4586、 GH4698、 GH4708、 GH4710、 GH4720Li、GH4742、GH5605、GH5188、GH6159、GH6783等。
铸造高温合金牌号:K213 、K403 、K417、K417G、 K418 、K418B、 K423、 K424、 K438 、K465、K4169、K4163、K644、MAR-M246、MA956等 。
DZ404、DZ405、DZ406、DZ408 、DZ411、 DZ417G、 DZ422 、DZ422B、DZ438G、DZ468、DZ4125、DZ4125L、DZ4951、DZ640M等。
DD402、DD403、DD404、DD406、DD407、DD408、DD426、DD432、DD499等。
主要规格:无缝管、钢板、圆钢、锻件、法兰、圆环、焊管、钢带、直条、丝材及配套焊材、圆饼、扁钢、六角棒、大小头、弯头、三通、加工件、螺栓螺母、紧固件
金属陶瓷复合材料有什么特点
金属陶瓷复合材料有什么特点陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
金瓷是什么材料是由陶瓷硬质相与金属或合金粘结相组成的复合材料。
金瓷又称金属基金属陶瓷,金属基金属陶瓷是在金属基体中加入氧化物细粉制得,又称弥散增强材料。
主要有烧结铝(铝-氧化铝)、烧结铍(铍-氧化铍)、TD镍(镍-氧化钍)等。
金属基陶瓷冲模的用途和优点有哪些金属陶瓷是一种复合材料,它的定义在不同时期略有不同,如,有的定义为由陶瓷和金属组成的一种材料,或由粉末冶金方法制成的陶瓷与金属的复合材料。
《辞海》定义为:由金属和陶瓷原料制成的材料,兼有金属和陶瓷的某些优点,如前者的韧性和抗弯性,后者的耐高温、高强度和抗氧化性能等。
美国ASTM专业委员会定义为:一种由金属或合金与一种或多种陶瓷相组成的非均质的复合材料,其中后者约占15%~85%体积分数,同时在制备的温度下,金属和陶瓷相之问的溶解度相当小。
从狭义的角度定义的金属陶瓷是指复合材料中金属和陶瓷相在三维空间上都存在界面的一类材料。
它是两相金属的机械混合物,每相金属各相保留原有的物理性能。
两相金属中一相为难熔相,它的硬度高、熔点高,在高温和冲击作用下不变形,在电弧作用下不熔化,因此这相金属在材料中起骨架作用。
这类金属有钨、钼、金属氧化物等。
另一相金属为载流相,它主要起导电和导热作用。
这类金属银、铜等。
什么是金属基复合材料与非金属基复合材料相比,金属基复合材料的潜力尚未充分发挥,应用面比较窄,成熟的品种很少。
这种情况一直到20世纪70年代中期才略有好转。
1974年,美国材料咨询局第一次肯定了研制和使用金属基复合材料的正确性,表示对这项工作要重视和支持。
这主要是航空、航天、能源工业的发展提出的一系列严格的要求,看来只有依赖金属基复合材料和精陶瓷才能够解决。
金属基复合材料所用的增强剂除了石墨、硼(硼硅克)纤维外,还有高强度钢丝、高熔点合金丝(钨、钼)和晶须(氧化铝、碳化硅)等。
这些纤维分别用来与铝、镁、钛、铜和镍钴基高温合金组成复合材料。
硼—铝复合材料的研制起步最早,取得了一定效果。
这种材料用于航天飞机的中机身构架管,可减重80公斤。
采用硼—铝复合材料的飞机为数不多,目前只有F—111、S—3A等,此外还有“阿特拉斯”导弹的壳体。
硼—铝复合材料最有希望的潜在用途是制造喷气发动机的压气机及风扇叶片,如用其代替钛合金可减重33%,节省成本45%左右。
美国几家主要发动机公司如普拉特惠特尼、通用电器、TRW等均进行过硼—铝复合材料风扇叶片的研究。
JT8D发动机上试用硼—铝压气机叶片,工作温度达到300℃,此外,在TF—41—P3发动机上还试用了铍—铝压气机叶片。
石墨—铝复合材料也具有很高的比强度和比模量,适合直升机、导弹、坦克和突击浮桥使用。
CH47直升机的传动机,采用了多层石墨—铝护板,大大减少了振动噪音,此外石墨—铝和石墨—镁将被用在人造卫星和大型空间结构上,如卫星支撑架、平面天线体、可折式抛物面天线助等。
镍基和钴基高温合金使用高熔点钼、钨丝式晶须增强后成为耐热复合材料。
这项工作在许多国家开展多年,目的是为了满足工作温度和载荷日益提高的先进涡轮发动机的需要。
利用这种耐热复合材料制成实心涡轮叶片,可以提高涡轮的温度和转数,减少涡轮级数和冷却气体的消耗,为改进发动机创造了条件。
采用加有二氧化钍和碳化铪的钨丝增强复合材料,工作温度为1160~1200℃,至少比目前的涡轮工作温度提高100℃。
利用氧化铝晶须毡或单晶纤维增强熔点钼钨后,可以耐更高的温度,在1650℃时的强度为钨的两倍,作为火箭喷口材料已通过试验。
以钢板为基体的各种层压板也是一种通用的复合材料。
例如波音767和757飞机上采用的一种包不锈钢铝板,可以代替钛合金作为发动机的防火材料,重量轻而价格低。
另一种是以钢板为基、多孔青铜的中间层、聚四氟乙烯塑料为表面层的三层复合材料,可用于制造载重汽车底盘衬套、机床导轨和在高温腐蚀介质中工作的轴承。
超导电缆也是一种复合材料,它是以铜—锡合金为基体,埋人295根铌线后组成,经过扩散处理在界面形成七微米厚的Nb2Sn金属化合物,它具有超导性,可以用于制造磁悬浮高速列车、核聚变反应堆电磁铁、储能超导感应器、超导发电机等新产品。
金属陶瓷的优点和用途金属陶瓷cermet为了使陶瓷既可以耐高温又不容易破碎,人们在制作陶瓷的粘土里加了些金属粉,因此制成了金属陶瓷。
由一种或几种陶瓷相与金属相或合金所组成的复合材料。
广义的金属陶瓷还包括难熔化合物合金、硬质合金、金属粘结的金刚石工具材料。
金属陶瓷中的陶瓷相是具有高熔点 、高硬度的氧化物或难熔化合物,金属相主要是过渡元素(铁、钴、镍、铬、钨、钼等)及其合金。
金属陶瓷既具有金属的韧性、高导热性和良好的热稳定性,又具有陶瓷的耐高温 、耐腐蚀和耐磨损等特性。
根据各组成相所占百分比不同,金属陶瓷分为以陶瓷为基质和以金属为基质两类。
陶瓷基金属陶瓷主要有:①氧化物基金属陶瓷。
以氧化铝、氧化锆、氧化镁、氧化铍等为基体,与金属钨、铬或钴复合而成,具有耐高温、抗化学腐蚀、导热性好、机械强度高等特点,可用作导弹喷管衬套、熔炼金属的坩埚和金属切削刀具。
②碳化物基金属陶瓷。
以碳化钛、碳化硅、碳化钨等为基体,与金属钴、镍、铬、钨、钼等金属复合而成,具有高硬度、高耐磨性、耐高温等特点,用于制造切削刀具 、高温轴承、密封环、捡丝模套及透平叶片。
③氮化物基金属陶瓷。
以氮化钛、氮化硼、氮化硅和氮化钽为基体,具有超硬性、抗热振性和良好的高温蠕变性,应用较少。
金属基金属陶瓷是在金属基体中加入氧化物细粉制得 ,又称弥散增强材料 。
主要有烧结铝(铝-氧化铝) 、烧结铍(铍-氧化铍)、TD镍(镍-氧化钍)等。
烧结铝中的氧化铝含量约5%~15%,与合金铝比,其高温强度高、密度小、易加工、耐腐蚀、导热性好。
常用于制造飞机和导弹的结构件、发动机活塞、化工机械零件等。
金属陶瓷兼有金属和陶瓷的优点,它密度小、硬度高、耐磨、导热性好,不会因为骤冷或骤热而脆裂。
另外,在金属表面涂一层气密性好、熔点高、传热性能很差的陶瓷涂层,也能防止金属或合金在高温下氧化或腐蚀。
金属陶瓷广泛地应用于火箭、导弹、超音速飞机的外壳、燃烧室的火焰喷口等地方。
金属基复合材料与陶瓷基复合材料相比较各自的优缺点有哪些两者都有非常大的潜力,就业是看心态,只要你感兴趣的工作,不去计较短时间的工资待遇的得失,这工作还不是手到拈来。
哪个更好谁也不好说,比如十几年前的考古,地质都是没人看好的学科,可现在可牛了,英语外贸这些热门的到现在倒不那么吃香。
陶瓷基应用在军工和航空方面,比如导弹火箭的发动机燃烧室和喷管,还有天地往返航天器的热防护件,如,头锥、机翼前缘等,还有核聚变的第一壁。
现在民用比如碳/碳化硅陶瓷基复合材料刹车片,也已经有很好的应用。
耐高温材料有哪些?
一、概述
NS112是一种与Incoloy 800同系列的全奥氏体低碳的镍-铁-铬合金,该合金中的钴含量可以严格控制在0.01%以下。
NS112能耐很多腐蚀介质腐蚀。
其较高的镍含量使其在水性腐蚀条件具有很好的抗应力腐蚀开裂性能。
高铬含量使之具有更好的耐点腐蚀和缝隙腐蚀开裂性能。
该合金具有很好的耐硝酸、有机酸腐蚀性,但是在硫酸和盐酸中的耐腐蚀性有限。
除了在卤化物有可能发生点腐蚀外,在氧化性和非氧化性盐中有很好的耐腐蚀性。
在水、蒸气以及蒸汽、空气、二氧化碳的混合物中也具有很好的耐腐蚀性。
应用于硝酸冷凝器——耐硝酸腐蚀、蒸汽加热管——很好的机械性能、加热元件管——很好的机械性能等。
对于应用于高达500℃的环境,合金供货态为退火态。
NS112物理性能:
密度:ρ=8.0g/cm3
熔化温度范围:1350~1400℃
NS112机械性能:(在20℃检测机械性能的最小值)
下表中所列性质适用于NS112合金的指定规格产品软化退火(稳定化退火)后的情况。
非标准尺寸材料的特殊性能可以根据特定应用场合的要求提供。
室温机械性能(最小值)
NS112具有以下特性:
●在高达500℃的极高温的水性介质中具有出色的抗腐蚀性
●很好的抗应力腐蚀的性能
●很好的加工性
NS112牌号和标准:
NS112ISO V型缺口冲击试验:
室温平均值:轴向>=150J/cm2
径向>=100J/cm2
时间-温度-敏化曲线
NS112条件应力值:
达到90%屈服强度的高条件应力值可应用于允许略大一点变形量的应用场合。
这些应力引起的永久应力会导致尺寸的变化,因此不推荐用于法兰和密封垫圈连接件。
NS112金相结构:
NS112合金具有稳定的面心立方结构。
化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。
NS112耐腐蚀性:
NS112是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能。
高镍成份使合金具有有效的抗应力腐蚀开裂性。
在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。
NS112较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。
NS112应用范围:
NS112广泛应用于各种使用温度不超过550℃的工业领域。
典型应用为:
● 硫酸酸洗工厂用的加热管、容器、筐及链等。
● 海水冷却热交换器、海洋产品管道系统、酸性气体环境管道。
● 磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等。
● 石油精炼中的空气热交换器
● 食品工程
● 化工流程
● 高压氧气应用的阻燃合金。
NS112加工和热处理
NS112适合于热加工和冷加工,但由于具有高强度,需要大功率的加工设备。
NS112都适合于用各种方便的焊接方法焊接。
NS112加热:
1.在热处理之前及热处理过程中应始终保持工件清洁。
2.在热处理过程中不能接触硫、磷、铅及其它低熔点金属,否则会损害材料的性能,应注意清除诸如标记漆、温度指示漆、彩色蜡笔、润滑油、燃料等污物。
3.燃料中的含硫量越低越好,天然气中的硫含量应少于0.1%,重油中硫含量应少于0.5%。
4.考虑到温度控制和保持清洁的需要,最好在真空炉或气体保护炉中进行热处理。
5.也可以在箱式炉或燃气炉中加热,但炉气必须洁净并以中性至微氧化性为宜,应避免炉气在氧化性和还原性之间波动,加热火焰不能直接烧向工件。
NS112热加工:
1. NS112的热加工温度范围1200℃~900℃,冷却方式为水淬或在760℃~540℃之间尽量快速冷却。
热弯曲应在1150℃-1000℃之间进行。
2.为得到最佳抗腐蚀性能和抗蠕变性,热加工后要进行退火处理。
3.材料可以直接送入已升温至1200℃的炉中,材料的保温时间为每100mm 厚度保温60 分钟。
保温足够的时间后迅速出炉,在规定的温度范围进行热加工。
当材料温度降到低于热加工温度时,需重新加热。
NS112冷加工:
112 的加工硬化率大于奥氏体不锈钢,因此需要对加工设备进行挑选。
冷加工材料应为退火热处理态,并且在冷加工时应进行中间退火。
2.若冷加工量大于10%,则在使用前需要对工件进行软化退火处理。
NS112热处理:
112的软化退火处理温度范围都是920℃~980℃,最佳处理温度是950℃。
2.为得到最佳的抗腐蚀性,冷却方式采用水淬,厚度小于1.5mm 的材料也可采用快速空冷。
3.在热处理过程中,都要按照前述的加热过程中必须保持清洁的事项操作。
NS112去氧化皮及酸洗:
112 的表面氧化物和焊缝周围的焊渣的附着性比不锈钢更强,机械方法和化学方法都可以使用,选择机械方法时要避免会产生金属污染或产生表面变形的方法。
2.在用HNO3/HF 混合酸进行酸洗前必须小心打磨或盐浴预处理将氧化膜打碎。
NS112机加工:
NS112须在退火热处理之后进行机加工,由于材料的加工硬化,因此宜采用比加工低合金标准奥氏体不锈钢低的切削速度和重进刀进行加工,才能车入已冷作硬化的表层下面。
NS112焊接:
NS112适合采用任何传统焊接工艺焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊、保护气体电弧焊等。
NS112的焊接必须在退火态进行,并清理干净污渍、粉尘和各种记号。
采用低热量输入,层间温度不超过150℃。
无需焊前或焊后热处理。
NS112清理:
去除氧化皮、油污和各种标记印痕,并用丙酮对焊接区域的基体金属和填充合金(如焊条)进行清洁,注意不能使用三氯乙烯TRI、全氯乙烯PER 和四氯化物TETRA。
NS112边缘准备:
最好采用机加工,如车、铣、刨,也可以进行等离子切割,若采用后者,切割边缘(焊接面)一定要研磨干净平整,允许不过热的精磨。
焊缝两边的母材约25mm 宽度的区域要打磨至露出光亮金属。
NS112坡口角度:
与碳钢相比,镍基合金和特种不锈钢的物理性能特点主要是低的热导率和高的膨胀系数,这些特性都要在焊接坡口准备时予以考虑,包括加宽底部间隙(1~3mm),同时由于熔融金属的粘滞性,在对接焊时应采用更大的坡口角度(60~70°)以抵消材料的收缩。
NS112起弧:
不能在工件表面起弧,应在焊接面起弧,以防起弧点导致腐蚀。
NS112焊接工艺:
NS112适合采用任何传统焊接工艺与同种材料或其他金属焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。
在采用手工电弧焊时,推荐使用(Ar+He+H2+CO2)多种成份混合的保护气体。
NS112的焊接必须在退火态进行,并使用不锈钢丝刷清理干净污渍、粉尘和各种记号。
在焊缝根部焊接时,为得到最佳的根部焊缝质量,操作必须非常小心(氩气99.99),这样在根部焊接完后焊缝就不产生氧化物。
焊接热影响区产生的颜色要在焊缝区域未冷却时用不锈钢刷刷去。
NS112推荐使用的焊接材料:
GTAW/GMAW Nicrofer S 7020
W.-Nr.2.4806
SG-NiCr20Nb
AWS A 5.14 ER NiCr-3
BS 2901-NA 35
W.-Nr.2.4648
EL-NiCr19Nb
AWS A 5.11 EniCrFe-3
NS112焊接参数及影响(热输入量):
焊接操作应在热量输入表规定的低热量输入下进行,采用叠珠焊缝技术,层间温度不超过120℃,必须遵守焊接规范。
热量的输入Q 按下面的公式计算:
U=弧电压,伏特
I=焊接电流,安培
V=焊接速度,厘米/分钟。
NS112焊后处理(酸洗、刷除氧化物及热处理):焊接后应立即用不锈钢丝刷刷除氧化物,也就是说,在金属还没有产生焊接色的时候就刷,这样可以得到理想的表面质量而不需要酸洗。
若没有特别要求或规定,酸洗通常是焊接中的最后一道工序,请参考去氧化皮及酸洗一节。
焊接前后均不需要热处理。